
Agent Mobility in
2D Landscapes

(Bonus: Some UI Customization)

Nathaniel Osgood

MIT 15.879

March 23, 2012

Agent Mobility

• Thus far, we have looked at spatial dynamics
where each agent remains stationary

– Continuous space (static & dynamic populations)

– Discrete space (cellular automata)

2D Spatial Embedding: Mobility Implications
• Continuous embedding (e.g. Wandering elephants)

– No physical exclusion: Agents are assumed to be small
compared to landscape scale, and exhibit arbitrary spatial
density without interfering

– Agents move

• In a direction

• With some speed

• Discrete cells (e.g. Agent-based predator prey,
Schelling Segregation)

– Divided into “Columns” and “Rows”

– Physical exclusion: Only one agent in a cell at a time

– Agents move continuously or discontinuously from cell to
cell

Hands on Model Use Ahead

Load model: Wandering Elephants.alp

Environment

Landscape Information

Agent Movement: Periodic Movement
Changes

New Direction Change Function Info

New Direction Change: Function “Body”

Setting Agent Speed (set so as to reach target in
 fixed time until next target shift)

Initiates movement towards (randomly chosen)
destination

(Main) Defining a Custom Angle Distribution

Data for Custom Distribution

Heading Towards Resource

Determining current position &
Searching for quickest way to find
water from that position.
(should be in separate function!)

Initiates movement
towards chosen destination

Looking at body of this function
(method)

Handling Agent Arrival at Destination
(Not Currently Used in this Model)

“Handler”: Code fires when the specified
event (here, arrival at a destination) occurs.

Handling Arrival Events in Statecharts

Transition contingent on agent arrival

Resumption of Wandering After Slaking Thirst

Handling of Movement Logic

Handling the case of reaching water
 when thirsty

Finding location
in continuous space
(x,y) & in terms of
Discrete vegetation
Space (c,r).
Poor style -- Should be In
separate function

Rerouting Around Barriers (Boundaries & Water)
Poor Style – entire logic, conditions (checks on boundaries, whether water) & rerouting
Logic should all be in separate functions from this & from each other). Remove constants

Environment: Updating Vegetation

Continuous Space: Relevant Methods
(To call on Agent)

• Already covered
– moveTo(x,y) : initiates agent movement to location

– setVelocity(v)

• Basic info
– getX()/getY()

– setXY(x,y): initial location

– jumpTo(x,y): moves agent to location

– isMoving()

– getTargetX()/getTargetY()
• Where heading to?

– setRotation()/ getRotation()

Environment Happens to Handle Process of
Maintaining Environmental Dynamics

Hands on Model Use Ahead

Load model: Schelling Segregation.alp

A Model to Examine the Emergence of
Segregation

A Discrete Spatial Environment with
Random Agent Positioning

Spatial Width & Height

Width & Height in
 Discrete Cells

Population Dependence on the
Population

Slider Input Sets Parameter Value

Sets Threshold Parameter Value

Default value is that of Threshold
parameter

“Threshold” parameter

Person is Assigned a Randomly Picked
Color

Color is set to either red or black with
equal likelihood

Person’s Visual Representation

Core Segregation (Movement) Logic

Person’s Initial Location

Count neighbors
Sharing same colour
(should be in diff.
Function).

Only satisfied if fraction of
surrounding individuals
Sharing color exceeds
threshold

if dissatisfied,
30% chance of moving

Experiment: Simulation Sets
Parameter Assumptions

Add a Parameter to Main

Experiment: Add a Slider!

Setting the Slider Properties

Setting Value for Parameter from Slider

Modify Person’s Behavior to Depend
on New Parameter

Updated Code (“get_Main()” required
Because new parameter is global
And lives in Main class rather than in
Person class.)

Movement in Discrete Space
• jumpToCell(int row, int column)

– Jumps to a particular unoccupied cell
• Precondition: destination cell is unoccupied

• moveToNextCell(int direction)
– Moves agent into a neighbouring cell in a given

direction

– Directions: NORTH, SOUTH, EAST, WEST, NORTHEAST,
NORTHWEST, SOUTHEST,SOUTHWEST

• Precondition: destination cell is unoccupied

• jumpToRandomEmptyCell()
– Jumps to randomly selected empty cell (returning

true), returns false if no empty cell can be located

Discovery in Discrete Space

• int []findRandomEmptyCell

– Returns row & column of an unoccupied cell

• Getting agents in cell or direction

– getAgentAtCell(int row, int column)

– getAgentNextToMe(int direction)

– getNeighbors()

Important Distinction

• Suppose an agent is moving in discrete 2D
space and need to be concerned about
moving into the same cell as another agent

• We can readily prevent this agent from
moving into another cell currently occupied

• But can we prevent this agent from colliding
with another agent that wishes to move into
the same cell?

– To answer this, we need to be clear about the
model of time used by agents

Synchronization & Discrete Agent
Movement

• In Synchronous mode, it is difficult to know if two
agents will collide using data on the current timestep
– Even if we know where the other object was during the

current timestep, it’s possible it will move into the cell we
wish to occupy in the next timestep

• It is simpler to handle this asynchronously
– Here, we can have each agent update at slightly different

times, and observe the location of the other agents at the
current time – without any significant chance that they will
move to the same place at the same time.

• Issue only arises for discrete agent movement, as this is
the only case where cells are limited to contain 1 agent

Irregular Spatial Embedding

Realizing Irregular Spatial Embedding in AnyLogic

• Basic idea: people moving around follow networks of paths

• Irregular spatial embedding is supported directly by
“Network Based Modeling” (Discrete Event
Simulation)
– This approach is individual-based, but treats agents

either as flowing through and being operated on by a
process or as (often interchangeable) process resources

– We will have a brief introduction to this approach later
in the week, showing how it can be combined with ABM

• With a modest amount of custom coding, irregular
spatial embedding can be achieved within ABM
– A guest lecture with an Alzheimer’s application will give

a glimpse as to how this can be achieved

